Search results for "Inelastic mean free path"

showing 2 items of 2 documents

Spin Polarimetry and Magnetic Dichroism on a Buried Magnetic Layer Using Hard X-ray Photoelectron Spectroscopy

2011

The spin-resolved electronic structure of buried magnetic layers is studied by hard X-ray photoelectron spectroscopy (HAXPES) using a spin polarimeter in combination with a high-energy hemispherical electron analyzer at the high-brilliance BL47XU beamline (SPring-8, Japan). Spin-resolved photoelectron spectra are analyzed in comparison with the results of magnetic linear and circular dichroism in photoelectron emission in the case of buried Co2FeAl0.5Si0.5 layers. The relatively large inelastic mean free path (up to 20 nm) of fast photoelectrons enables us to extend the HAXPES technique with electron-spin polarimetry and to develop spin analysis techniques for buried magnetic multilayers a…

Physics::Instrumentation and DetectorsChemistrybusiness.industryGeneral EngineeringPolarimetryGeneral Physics and AstronomyElectronPhotoelectric effectDichroismInelastic mean free pathMolecular physicsOpticsX-ray photoelectron spectroscopyBeamlineSpin (physics)businessJapanese Journal of Applied Physics
researchProduct

Spin-polarization effects for electrons passing through thin iron and cobalt films

1993

Abstract Spin-dependent effects of the inelastic mean free path (IMFP) are evident for low-energy electrons passing through magnetized ferromagnetic films caused by a different attenuation within the layer. Values of IMFP for both spin components were determined for ultrathin iron and cobalt layers on W(1 1 0) by means of spin-resolving photoelectron spectroscopy.

Condensed matter physicsSpin polarizationMean free pathAnalytical chemistrychemistry.chemical_elementGeneral ChemistryElectronCondensed Matter PhysicsInelastic mean free pathCondensed Matter::Materials ScienceX-ray photoelectron spectroscopychemistryFerromagnetismTransition metalMaterials ChemistryCondensed Matter::Strongly Correlated ElectronsCobaltSolid State Communications
researchProduct